If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=31=9
We move all terms to the left:
z^2-(31)=0
a = 1; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·1·(-31)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{31}}{2*1}=\frac{0-2\sqrt{31}}{2} =-\frac{2\sqrt{31}}{2} =-\sqrt{31} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{31}}{2*1}=\frac{0+2\sqrt{31}}{2} =\frac{2\sqrt{31}}{2} =\sqrt{31} $
| 12=5(v-3)-2v | | 8(3a-6)=(2a-4) | | 9/2x-11/2=25/2 | | 16=2(u+3)-4u | | -7(3x+1)+4=0 | | 6(y-8)-8y=-34 | | -10x^2+10x+9=0 | | 312x-4=512x+5 | | -9n+10=-7n-14 | | 14/x-2=5 | | -7x-3=5x-5 | | 9y-5=7y+7 | | x2-9=27 | | 9+x-30=5x-6 | | 2/3+3m/7=28/21 | | x-1=1+2x-10 | | 4(v-1)=-52 | | -19-(-47)=x/12 | | 390-20d=160 | | -3y+9=19y+-2 | | -29=5u+6–12u | | 5x^2+13.4x-18.2=0 | | 5(k-5)-4(k+1)-14=-37 | | |5n-2|-6=3 | | 2/4x2+2/8x-2/16=0 | | 20=11+2x-15+x-3 | | 4×-y=1 | | y^2+4y=780 | | 2(2y+1)-32=0 | | 12.35=5.n | | 2+3r=20 | | 16u-5u+18=30-14 |